
© 2011 IBM Corporation T.J. Watson, IBM Research

Alexandre Eichenberger

4/22/16

The Case for Enhancing Portability
in Future OpenMP

© 2011 IBM Corporation

Overview
§ OpenMP 4.5 is a powerful tool for accelerators

– exposes new patterns

§ Some constructs could be better defined to enhance portability
– example: target teams executing on host

§ Some constructs are used in new ways, and could be relaxed
– example: parallel & collapsed loops

§ Take away
– a few small steps can greatly improve the performance portability of OpenMP

2 IBM - OpenMP for Exascale - Alexandre Eichenberger 22 April 2016

© 2011 IBM Corporation

Example 1: I wrote some good target code
§ Efficient code for my accelerators

§ Now someone wants to run it on a machine without accelerators

§ Or some data sets are too small to be profitable on accelerators

3 IBM - OpenMP for Exascale - Alexandre Eichenberger 22 April 2016

for each device

for each team

for each thread

parallelism

int devNum = MAX(1, omp_get_num_devices()); int n = N / devNum;
#pragma omp parallel for num_threads(devNum)
for (int d=0; d<devNum; d++) {
 #pragma omp target teams num_teams(1024) thread_limit(1024) device(d)
 {
 #pragma omp distribute
 for (int i=d*n i<d*n+n; i++) {
 #pragma omp parallel for
 for (int j=0; j<M; j++) {
 // loop code for device d, loop i & j
}}}}

© 2011 IBM Corporation

int devNum = MAX(1, omp_get_num_devices()); int n = N / devNum;
#pragma omp parallel for num_threads(devNum)
for (int d=0; d<devNum; d++) {
 #pragma omp target teams num_teams(1024) thread_limit(1024) device(d)
 {
 #pragma omp distribute
 for (int i=d*n i<d*n+n; i++) {
 #pragma omp parallel for
 for (int j=0; j<M; j++) {
 // loop code for device d, loop i & j
}}}}

What could go wrong?

§ Where to get the parallelism on the host?
– parallel for over devices? target teams? innermost parallel for?
– target teams behavior on the host?

•  standard does not prescribe if run in parallel or not
•  target teams is not disabled by OMP_NESTED=FALSE

– even when disabled, distribute / parallel / for are costly
•  extra runtime calls, inflexible code structures, outlining…

4 IBM - OpenMP for Exascale - Alexandre Eichenberger 22 April 2016

© 2011 IBM Corporation

A user could write two versions?
§ One for target devices, one for the host

§ But users really don’t like it
– replicating code is a maintenance issue
– and is against OpenMP pragma-only paradigm

5 IBM - OpenMP for Exascale - Alexandre Eichenberger 22 April 2016

int devNum = omp_get_num_devices(); int n = N / devNum;
#pragma omp parallel for num_threads(devNum)
for (int d=0; d<devNum; d++) {
 #pragma omp target teams … device(d)
 {
 #pragma omp distribute
 for (int i=d*n i<d*n+n; i++) {
 #pragma omp parallel for
 for (int j=0; j<M; j++) {
 // loop code for device d, loop i & j
}}}}

#pragma omp parallel for
for (int i=0 i<N; i++) {
 for (int j=0; j<M; j++) {
 // loop code for device d, loop i & j
}}

has
devices? yes no

© 2011 IBM Corporation

A first step to help portability
§  Iterator over all devices

– more portable to have a construct that distribute work over devices
– with predetermined behavior when no devices are available

§ Well defined Target construct on host
– target teams become a parallel on the host

•  because coarse grain parallelism is often best
– integrated into host contention group
– integrated with the control for nested parallelism

•  controlled by nest & max-active-level ICVs
– integrated with proc-bind affinity
– ignore parameters meant for devices

•  thread limit is best for GPUs, has no role on host

§ Allows for eliminating some constructs
– nested parallelism inspired by GPUs (teams/distribute/parallel/for)
– is not beneficial on “thread-poor” host
– compiler could recognize the “if(omp_is_initial_device())” pattern
– or could introduce custom if values: “if(onhost)” & “if(ondevice)”

6 IBM - OpenMP for Exascale - Alexandre Eichenberger 22 April 2016

© 2011 IBM Corporation

More advanced extensions: “if-and-only-if”
§ May allow more than one directive per construct

– for the same piece of code (e.g. code to be executed on a target)
– add one set of directive for target devices
– add one set of directive for host device

7 IBM - OpenMP for Exascale - Alexandre Eichenberger 22 April 2016

Two mutually exclusive pragma
with “if and only if”

…
 int devNum = omp_get_num_devices();
 #pragma omp target teams distribute num_teams(1024) device(d) iff(devNum)
 #pragma omp parallel for iff(!devNum)
 for (int i=d*n i<d*n+n; i++) {
 #pragma omp parallel for iff(devNum)
 for (int j=0; j<M; j++) {
 // loop code for device d, loop i & j
 }}

© 2011 IBM Corporation

Example 2: Increased reliance on collapsed loops
§ Typical hosts have small numbers of threads

– thus OpenMP 3.1 code did not use many collapsed loops
•  benefits were small (outer-loop parallelism was sufficient)
•  overhead were significant (collapse is expensive to implement)

§ Target devices have often a magnitude more threads
– we see many more collapsed loop in target codes

•  need much more parallelism than outer-most loop
•  bring in more by collapsing many nested loops

§ This cause a problem for portability
– good code for devices has more overhead for host code

8 IBM - OpenMP for Exascale - Alexandre Eichenberger 22 April 2016

© 2011 IBM Corporation

A second step towards portability
§ As collapse constructs Is more frequent…

– generate more optimized code for collapsed loop

§ May allow “onhost” or “ontarget” clause qualifier
– e.g. “collapse(onhost: 1, ontarget: 3)

§ Or redefine a collapse that is less descriptive
– as of OpenMP 4.5, it precisely describe how iterations must be collapsed

9 IBM - OpenMP for Exascale - Alexandre Eichenberger 22 April 2016

© 2011 IBM Corporation

Summary
§  Implementations of OpenMP 4.5 show promising performance

– many codes execute nearly as fast as natively-programmed codes

§ When defining the standard, not all performance porting pattern
were clear

§ With what we know, we should be able to address many of these
issues at the OpenMP level by relatively minor tweaks

10 IBM - OpenMP for Exascale - Alexandre Eichenberger 22 April 2016

